Inhibition of glutamate-induced delayed calcium deregulation by 2-APB and La3+ in cultured cortical neurones.

نویسندگان

  • Christos Chinopoulos
  • Akos A Gerencser
  • Judit Doczi
  • Gary Fiskum
  • Vera Adam-Vizi
چکیده

Exposure of neurones in culture to excitotoxic levels of glutamate results in an initial transient spike in [Ca2+]i followed by a delayed, irreversible [Ca2+]i rise governed by rapid kinetics, with Ca2+ originating from the extracellular medium. The molecular mechanism responsible for the secondary Ca2+ rise is unknown. Here, we report that the delayed Ca2+ entry in cortical neurones is diminished by 2-aminoethoxydiphenyl borate (2-APB: IC50 = 62 +/- 9 microm) and La3+ (IC50 = 7.2 +/- 3 microm), both known to inhibit transient receptor potential (TRP) and store-operated Ca2+ (SOC) channels. Application of thapsigargin, however, failed to exacerbate the delayed Ca2+ deregulation, arguing against a store depletion event as the stimulus for induction of the secondary [Ca2+]i rise. In addition, these neurones did not exhibit SOC entry. Unexpectedly, application of ryanodine or caffeine significantly inhibited glutamate-induced delayed Ca2+ deregulation. In basal Ca2+ entry experiments, La3+ and 2-APB modulated the rapid rise in [Ca2+]i caused by exposure of neurones to Ca2+ after pre-incubating in a calcium-free medium. This basal Ca2+ influx was mitigated by extracellular Mg2+ but not aggravated by thapsigargin, ryanodine or caffeine. These results indicate that 2-APB and La3+ influence non-store-operated Ca2+ influx in cortical neurones and that this route of Ca2+ entry is involved in glutamate-induced delayed Ca2+ deregulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation.

To clarify the role of the mitochondrial permeability transition pore (MPT) in the mechanism of the glutamate-induced delayed calcium deregulation (DCD) and mitochondrial depolarization (MD), we studied changes in cytosolic (pH(c)) and mitochondrial pH (pH(m)) induced by glutamate in cultured cortical neurons expressing pH-sensitive fluorescent proteins. We found that DCD and MD were associated...

متن کامل

Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells.

Mitochondria within cultured rat cerebellar granule cells have a complex influence on cytoplasmic free Ca2+ ([Ca2+]c) responses to glutamate. A decreased initial [Ca2+]c elevation in cells whose mitochondria are depolarized by inhibition of the ATP synthase and respiratory chain (conditions which avoid ATP depletion) was attributed to enhanced Ca2+ extrusion from the cell rather than inhibited ...

متن کامل

Excitotoxicit Affects Membrane Potential and Calmodulin Kinase II Activity in Cultured Rat Cortical Neurons

Background and Purpose: Glutamate-induced excitotoxicity has been implicated as a causative factor for selective neuronal loss in ischemia and hypoxia. Toxic exposure of neurons to glutamate results in an extended neuronal depolarization that precedes delayed neuronal death. Because both delayed neuronal death and extended neuronal depolarization are dependent on calcium, we examined the effect...

متن کامل

Excitotoxicity affects membrane potential and calmodulin kinase II activity in cultured rat cortical neurons.

BACKGROUND AND PURPOSE Glutamate-induced excitotoxicity has been implicated as a causative factor for selective neuronal loss in ischemia and hypoxia. Toxic exposure of neurons to glutamate results in an extended neuronal depolarization that precedes delayed neuronal death. Because both delayed neuronal death and extended neuronal depolarization are dependent on calcium, we examined the effect ...

متن کامل

Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons.

Utilizing Indo-1 microfluorimetry, we have investigated the role of mitochondria and Na+/Ca2+ exchange in buffering calcium loads induced by glutamate stimulation or depolarization of cultured rat forebrain neurons. A 15 sec pulse of 3 microM glutamate or 50 mM potassium with veratridine was followed by a 2 min wash with a solution containing either Na(+)-free buffer or the mitochondrial uncoup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2004